# Rubinstein-Taybi Syndrome: When Phenotype is the Key

Mafalda Matias, Inês Ganhão, Catarina Lacerda, Susana Rocha

#### Port J Pediatr 2021;52:74-5 DOI: https://doi.org/10.25754/pjp.2021.19148

A 9-month-old girl was referred to neuropediatric consultation due to motor delay. She was the first child of a non-consanguineous couple. It was an uneventful pregnancy with normal fetal ultrasound scans and eutocic term delivery, with Apgar scores 9/10. She presented with short stature (<5th percentile), microcephaly (< percentile 5), a peculiar face (Figs. 1 and 2) with highly arched palate, short neck, large angulated thumbs (Fig. 3) and halluces, delayed psychomotor development and a distinctive grimacing smile. The DNA sequencing of the CREBBP gene confirmed the diagnosis of Rubinstein-Taybi syndrome, detecting a *de novo* and unidentified variant: an heterozygous mutation of c.3182 3183dup (p.Glu1062Argfs\*38). Further investigation found an atrial septal defect, obstructive sleep apnea, Chiari malformation type I and a butterfly-shaped dorsal vertebra. She developed a marked impulsivity and a binge eating disorder, leading to obesity. Her latest evaluation, at 36 months, established a developmental profile between 13 and 27 months, with fine motor skills and expressive language being the most affected areas. Rubinstein-Taybi syndrome is a congenital and polymalformative neurodevelopmental disorder.1-3 This rare syndrome, with an incidence of one in 100,000-125,000 births, has no preference for race or gender.<sup>1,3-5</sup> It is an autosomal dominant disease mainly caused by mutation in the CREBBP gene, which is essential for normal fetal development.<sup>1,3-5</sup> Rubinstein-Taybi syndrome is characterized by microcephaly, low anterior hairline, low-set ears, down slanted palpebral fissures, protruded beaked nose with a prominent columella, and angulated broad thumbs and halluces. This syndrome is often associated with failure to thrive, hypotonia, and psychomotor developmental delay.<sup>1-5</sup> Heart, vascular, renal, and skeletal malformations are frequently present. There is also a higher susceptibility to recurrent respiratory infections, dysphagia, obstructive sleep apnea,<sup>1,3-5</sup> and both benign (e.g. meningioma, pilomatrixoma) and malignant tumors (e.g. neuroblastoma, rhabdomyosarcoma).<sup>3</sup>

features to diagnose Rubinstein-Taybi syndrome. Although, in most cases, a genetic confirmation is required, early recognition will allow an eclectic and timely intervention, and better prognosis.



**Figure 1.** Typical facial features: low anterior hairline, frontal salmon patch, hypertelorism, convergent strabismus, down slanting palpebral fissures, inverted epicanthus, long philtrum, a small mouth, and thin upper lip.



Figure 2. Typical facial features: beaked nose and mild retrognathia.

Department of Pediatrics, Centro Hospitalar Barreiro-Montijo, Barreiro, Portugal Corresponding Author

This case highlights the importance of the phenotypic

https://orcid.org/0000-0001-8639-5338 mafaldamatias@gmail.com

Serviço de Pediatria, Centro Hospitalar Barreiro-Montijo, Avenida Movimento das Forças Armadas, 2834-003 Barreiro, Portugal Received: 26/12/2019 | Accepted: 23/06/2020 | Published: 03/01/2021

© Author(s) (or their employer(s)) and Portuguese Journal of Pediatrics 2021. Re-use permitted under CC BY-NC. No commercial re-use.



Mafalda Matias



Figure 3. Broad and angulated thumb, broad distal phalanges of the third and fourth fingers.

**Keywords:** Child; Phenotype; Rubinstein-Taybi Syndrome/ diagnosis; Rubinstein-Taybi Syndrome/genetics

#### WHAT THIS REPORT ADDS

• The presence of broad and flattened thumbs, a beaked nose, and short stature should raise the suspicion of this syndrome in a child with developmental delay.

• Behavior disturbances and obesity are common issues with advancing age that require close monitoring.

• Half of cases are caused by mutations of the CREBBP gene.

• Establishing a correct diagnosis will help clinicians minimize any complications or comorbidities associated with Rubinstein-Taybi syndrome.

### **Conflicts of Interest**

The authors declare that there were no conflicts of interest in conducting this work.

## Funding Sources

There were no external funding sources for the realization of this paper.

#### Provenance and peer review

Not commissioned; externally peer reviewed

## **Consent for publication**

Consent for publication was obtained.

### **Confidentiality of data**

The authors declare that they have followed the protocols of their work centre on the publication of patient data.

## Awards and presentations

A previous version of this case was presented as a poster at the Excellence in Pediatrics conference in London, in 2016.

#### References

1. Milani D, Manzoni FM, Pezzani L, Ajmone P, Gervasini C, Menni F, et al. Rubinstein-Taybi syndrome: Clinical features, genetic basis, diagnosis, and management. Ital J Pediatr 2015;41:4. doi: 10.1186/s13052-015-0110-1.

2. Stevens CA. Rubinstein-Taybi syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, et al, editors. GeneReviews: Seattle; 2019.p.1993-2020.

3. Spena S, Gervasini C, Milani D. Ultra-rare syndromes: The example of Rubinstein-Taybi syndrome. J Pediatric Genet 2015;4:177-86. doi: 10.1055/s-0035-1564571.

4. Vaux KK. Genetics of Rubinstein-Taybi syndrome [accessed 31 July 2019]. Available at: https://emedicine.medscape.com 5. National Organization for Rare Disorders: Rubinstein-Taybi syndrome [accessed 31 July 2019]. Available at: https:// rarediseases.org